Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Identification of phase transitions in ferroelectric crystals

DLF

DYDAKTYCZNE LABORATORIUM

FIZYCZNE

Experiment 27

I. Background theory.

- 1. Molecular dipole moments.
- 2. Local electric field acting on an atom in a crystal.
- 3. Electric field strength and induction.
- 4. The field in a dielectric medium between capacitor plates.
- 5. Dielectric constant and polarisability of a medium.
- 6. Polar and non-polar dielectric materials.
- 7. Polarisation of dielectric materials.
 - a) electron polarisation;
 - b) polarisation of elastic ions;
 - c) orientation polarisation (dipole);
 - d) orientation of dipoles in solids.
- 8. Domain structure of ferroelectric materials.
- 9. Ferroelectric hysteresis loops. Movements of domains.
- 10. Type I and type II phase transitions in ferroelectric materials.
 - a) thermodynamic theory of ferroelectrics (Landau theory);
 - b) spontaneous polarization of ferroelectrics and dependence on temperature;
 - c) Curie temperature.
- 11. Capacitance of electric conductors. Parallel plate capacitors.
- 12. Design and operating principles of an RLC bridge.
- 13. Application of ferroelectrics.

II. Experimental tasks.

1. Refer to the experimental setup shown in *Picture 1*.

Picture 1. Setup for measuring the dielectric constant of ferroelectric materials: 1 – heating oven with capacitor; 2 – RLC bridge; 3 – set of samples (ferroelectric crystals).

2. The laboratory supervisor will tell you which crystal to mount into the capacitor (*Picture 2*).

To do this, raise both electrodes slightly (1 in *Picture 2*), place a properly cut piece of aluminium foil (2 in *Picture 2*) on the base and then place the selected crystal between the foil and one of the electrodes (as in *Picture 2*).

Place the capacitor in the heating jacket (1 in *Picture 1*).

Picture 2: View of the capacitor: 1 – capacitor electrode handles; 2 – correctly cut aluminium foil with test crystal.

- 3. Turn on the measurement module, setting the switch to the *ON* position.
- 4. Preheat the system to the maximum recommended temperature for a selected sample (see *Table 1*).

To do this, set the *OVEN* switch on the RLC bridge to the *ON* position, then raise the temperature with the *SET TEM* knob. After reaching the desired temperature, set the *OVEN* switch to the *OFF* position.

ATTENTION!

Due to the slow temperature response, turn off the heater when the temperature reaches above 20 °C lower than the desired temperature.

5. Measure the capacitance as a function of temperature.

To do this, heat the system to the maximum temperature for the selected test crystal. Recommended values of temperature and pressure ranges are given in *Table 1*.

Table 1: Recommended temperatures for TGS and \mbox{BaTiO}_3 crystals.

Crystal	Maximum temperature [°C]	Temperature range [°C]
TGS	60	45 - 55
BaTiO ₃	170	50 - 170

Switch of the heating and while the system is cooling, note the temperature and capacitance in steps of 1 $^{\circ}$ C for the TGS crystal and in steps of 3 $^{\circ}$ C for the BaTiO₃ crystal.

- 6. Calculate the dielectric permittivity of the test crystal for the suggested temperature range. The dimensions of the crystals are given in the specifications in tray 3 in *Picture 1*.
- 7. Prepare the following graphs:
 - a) dielectric permittivity vs. temperature;
 - b) inverse dielectric permittivity vs. temperature.
- 8. Determine the Curie temperature of the test crystal..
- 9. Compare your result for the Curie temperature with values given in the literature.
- 10. Specify the type of phase transition.

III. Apparatus.

- 1. RLC bridge system with capacitor and heating oven.
- 2. Set of sample crystals TGS (triglycine sulfate) and BaTiO₃ (barium titanate).

IV. Literature.

- 1. C. Kittel "Introduction to Solid State Physics", Wiley, 2004.
- 2. R.P. Feynman, R. Leighton, M. Sands *"The Feynman Lectures on Physics"*, Vol. 2. Parts 1-2., Addison Wesley, 2005.